Special Projects

Using EMEGEN, the full range of performance curves for a synchronous motor design can be created

• Acceleration _____

As Machine Designers that understand all types of motor designs and construction, we are uniquely capable of designing specialty systems to support non-standard or First Of A Kind evolutions

RCP Motor Transfer System =

Issues

- In Containment Steam Line interfered with lift
- 11-1/2ft.dia. motor needed to move vertically through 12ft.dia. Equipment Hatch
- Transfer System needed to be designed such that individual components could be hand carried into containment during plant cool down (<80 lbf each)

Solution

- Low Profile track and roller system utilized motor lower bracket as strong-back to reinforce thin plate
- Individual beam sections, each less than 80 lbf bolted together to create bridge

Field Amps

Saturation _____

Saturation Curves at Rated Conditio

 \bigcirc

 $(\mathbf{\Phi})$

Our Vision

Leverage the EME Machine Design, Power Engineering and Vibration Analysis Capabilities to be the leading Custom Design Builder of Projects which require innovative systems development and integration of Electrical & Mechanical engineering solutions

Our Mission:

Provide cost effective engineered solutions for Complex Projects

412.351.0290 emeassociates.com

150 Seco Road, Monroeville, PA 15146 ElectroMechanical Engineering, Associates

 (\bullet)

 (\blacklozenge)

 (\bullet)

INDUCTION AND SYNCHRONOUS MOTOR DESIGN

EME Proprietary Software, EMEINDUCT & EMEGEN, enable clean-sheet induction & Synchronous motor design & analysis

- · Calculate steady state rotor and stator temperatures using a half tooth-half slot model of the rotor and stator.
- · Combine distributed losses (copper I2R losses include resistance-temperature relationship), thermal resistances (conductivity through materials and forced convection using calculated heat transfer coefficients) into a finite difference model.
- · Combine Finite Difference Model with results of the Ventilation Modeling include details of the air flow distribution through the machine
- Establish the air temperatures and the heat transfer coefficient at each convective node in the model.

Item	Description	Units	Item	Description	Units	Item	Description	Units
HP	Rated Power Output	hp	WSS	Width Stator Slot	in.	Gap	Single Air Gap	in.
Margin	Pull-Out Margin	p.u.	TPC	# of Turns in Coil	#	Did	ID of Rotor Punching	in.
Vt	Terminal Voltage	Volts	С	# of Parallels	#	S2	# Rotor Slots	#
V1	Phase Voltage	Volts	Pitch	Stator Coil Pitch	Slots	Drs	Depth of Rotor Slot	in.
F	Frequency	Hz	Ns	Strand deep in turn	#	wrs	Width of Rotor Slot	in.
Р	Number of Poles	#	Ngr	Grps in Transposition	#	Во	Width Rotor Slot Opening	in.
Ds	Dia Stator Bore	in.	Hs	Strand Thickness	in.	Но	Height Rotor Slot Opening	in.
Dod	Dia Frame Bore	in.	Bs	Strand Width	in.	Ht	Bottom Opening to Bar Top	in.
L1	Length of Core	in.	Gw	Groundwall Thickness	in.	Wrb	Widt of Rotor Bar	in.
Bv	Stator Vent Width	in.	Binder	Binder Thickness	in.	Drb	Depth of rotor Bar	in.
Nv	# of Stator Vents	#	Stri	Strand Insulation Thickness	in.	MLCr	Length of Rotor Bar	in.
Vft	# Vent Finger/Tooth	#	Cond	Conductor Insulation Thickness	in.	ODring	OD of Shorting Ring	in.
s1	# Stator Slots	#	Slfin	Side Filler	in.	IDring	ID of Shorting Ring	in.
dss	Depth of Stator Slot	in.	Tcl	Slot Air Film Thickness	in.	Wring	Thickness of Shorting Ring	in.
dsw	Depth Stator Wedge	in.	Rtdtk	RTD Thickness	in.			

Assess Impact of Changes

 \bigcirc

Create Design Basis for New Machine

- **R1** Primary R, ohmic value Winding
- **R2** Secondary R, rotor bar & end ring
- **RM** Iron loss R, Fundamental Frequency losses, stator teeth/core & High Frequency surface losses
- *Xmp* Magnetizing Reactance
- X1 Primary Leakage Reactance, slot, zig-zag, & end leakage
- **X2** Secondary Leakage same components as X1 accounts for rotor slot style
- Xs,Xt System & Transformer Reactance

🔘 Seismic Analysis 🗕

• Or a combination (pump

& housing/bearings)

Rotating element

Static structure

Field testing :

- Acoustic testing Modal testing
- Operating deflection
- shapes of structures

Rotor Dynamics Analysis =

- Typically modeled with purpose made rotor dynamics software
- Can use other methods as appropriate
- Often calibrated with field acquired coast down data

Field Testing =

- Acquire data from installed plant equipment
- Portable stand-alone instrumentation setup when needed

- normal operation

Gap - Slot - Frame

ID Fan Motor Up-Rate Case Study 5000hp to 6000hp

EME Routinely supports customers with Up-Rate Analysis by performing a complete performance and thermal analysis on design changes

• No Dimensional Changes to core – balance of flux density unchanged

- Reduction in Turns/Coil and Coil Throw increase in flux density of 9.3% across Air Gap, Back Iron & Teeth
- Consider impacts to Core Heating and Coil Heating
- Flux Density within acceptable saturation region, however core losses increase during
- · Evaluate change in Coil Pitch for winding induced harmonics

Table 6 – 6,000 HP Rating Operating Parameters						
Name	Value					
Speed	895.18 RPM					
Primary Phase Current	776.1 A					
Secondary Phase Current	701.5 A					
Power Factor	0.854					
Efficiency	97.38 %					
Stator Winding Current Density	2,244.1 A/in ²					
Rotor Bar Current Density	796.4 A/in ²					
Locked Rotor Current	4,452.6 A (573.7 %)					
Torque	35,202 lbf-ft					
Breakdown Torque	79,345.9 lbf-ft (225.4 %)					
Locked Rotor Torque	30,306 lbf-ft (86.1 %)					

۲

۲